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Abstract

A primary drawback of existing mechanisms for public goods funding
is the degree of uncertainty—grants carry substantial risk for backers,
while post factum rewards are subject to arbitrary disbursement. We
propose the concept of ternary funding, a trustless mechanism that
is contingent on pre-defined deliverables. In its simpler form, stable-
coins are locked until attestation of an outcome by validators. In its
more elaborate form, a non-fungible token (NFT) is procedurally gen-
erated by mapping the addresses of validators. Successful attestation
transforms the latter into an implicit mapping of endorsements as its
phenotype is dependent on the aforementioned addresses.
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1 Introduction

The transfer of trust from off-chain decisions to on-chain mechanisms is a
particularly difficult problem. Where subjectivity complicates attestation,
the quandary becomes further apparent. Simply distributing the former
process over many independent participants doesn’t address it, even when
assuming Sybil resistance and incentives to minimise collusion. In this sce-
nario, trust remains on non-robust collective decision making rather than
a reliable, on-chain system, and the advantage of a distributed ledger is
questionable.

Even though absolute trustlessness whenever on-chain and off-chain com-
ponents interface is impossible, trust in validators, as a practical concern,
can nevertheless be minimised to the point where its significance is greatly
diminished. Collusion is a primary consideration and can be largely miti-
gated by limiting attestation to a random subset and obfuscating individual
attestations via zero-knowledge proofs. Of equal importance when designing
decentralised oracles around trustlessness, however, is the nothing-at-stake
problem. The latter can be addressed by implementing slashing conditions.
Crucially, this is not an exhaustive description of the attack surface, but
rather, a broad look at its two largest components [1][2][3].

For decentralised oracles that comprise subjectivity, the task of shifting
trust to the mechanism itself is undoubtedly a complex one, but nevertheless
represents significant upsides; where purely off-chain equivalents require the
counterparty to trust collective determinations, trustlessness provides the
counterparty with reliability, and in turn, a greater incentive to participate
at the outset.

This paper makes several contributions. The core primitive is a decen-
tralised oracle for inherently subjective outcomes, which is in turn harnessed
to enable trustless mechanisms contingent on pre-defined criteria.1 In the
context of public goods, two such mechanisms are proposed; the first consists
of locking stablecoins until attestation by the former. The second involves
the use of validator addresses as seed inputs to procedurally generate an
NFT that’s subject to a similar attestation process. The mapping is con-
tained within the token itself and its release to the counterparty reflects
the cumulative endorsements of the validator pool. For both modes, an
overarching DAO is not needed to manage successive rounds. A stigmer-
gic approach can be utilised that enables the viability of each round to be
contingent on the necessary threshold of validators being reached.

1In an extended version of this paper, the core primitive applied to a theoretical dis-
tributed ledger is described in Section 3.
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1.1 Not-For-Profit

All mechanisms described herein are not-for-profit. There is no native token
and the atypical staking pool described in Section 2.3 has no direct reward
for validators.2 In order to eliminate the volatility of Ether, a decentralised
stablecoin is used for both the pool outlined in Section 2.2 and Section 2.3.

1.2 Public Goods

The term public good in the context of this paper refers to goods that are
non-excludable, non-rivalrous and include the consideration of externalities.3

The example provided in Section 1.3 is a public good in the form of open
data.

1.3 Primary Example

The primary example of a public good that is referenced within this paper is
the findings of a team of clinical researchers conducting a small study on the
efficacy of a novel immunotherapy. This is used only for illustrative purposes,
and the mechanisms described in Section 2 can be applied to any public
good that meets the criteria in Section 1.2. The aforementioned example
was chosen as it is small in scale and describes research for an underserved
cohort that receives insufficient funding under traditional models.

2The social incentives for participating in such a staking pool are described in later
subsections.

3See https://web.archive.org/web/20210702173945/https://otherinter.net/

research/positive-sum-worlds/ for discussion on externalities in the context of public
goods.
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2 Trustless Public Goods Funding

There is a current need to fund public goods that provide benefit to under-
served communities such as those described in Section 1.3.

2.1 Ternary Funding

We introduce a funding mechanism consisting of three primary stages:

• Population of a staking pool, of which, a minimum number of valida-
tors are needed to progress to subsequent stages

• Population of a donation pool, or as described in Section 2.4, the
generation of a joint token

• Attestation of the outcome by a random selection of validators, with
release of the donation pool or joint token upon delivery of the public
good

Population of atypical
staking pool

Generation
of joint token

Attestation of the 
outcome by 

random subset 
of validators

threshold 
reached

0x1e..0x23..

0x62..0x8b..

f(v2)f(v1)

f(v4)f(v3) 0x1e..0x62..

Population of atypical
staking pool Population of 

donation pool

Attestation of the 
outcome by 

random subset 
of validators

threshold 
reached

threshold 
reached

0xd9..0x3c..

0xb5..0x41.. 0xb5..0x3c..

(Pooled Model)

(Joint Token
Model)

Figure 1
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The cycle is renewed for each funding round and a DAO is not needed
to manage subsequent rounds or changes to parameters (see Section 2.3.7).4

Critically, the staking pool must be populated before the donation pool.
This is for several reasons:

• While validators that are randomly chosen to attest to the outcome
are pseudonymous, all validators are initially identified (see Section
2.3). This, together with a minimum threshold of validators being
reached, provides a degree of legitimacy to the funding round, which
is the mechanism that incentivises contributions to the donation pool.

• The threshold of validators being reached is an implicit agreement of
the parameters of the funding round, most notably, acceptance of the
party developing the public good, and the specific criteria of what
constitutes the materialisation of the public good (see Section 2.3.6).

As attestation by the staking pool is the mechanism that either releases
or reverses the funds in the donation pool, the amount in the donation pool
is capped in order to be within proportion to the staking pool. This is to
prevent an attack where the cost of bribing validators, or validators other-
wise colluding, is lower than the potential payout of the donation pool (see
Section 2.3.2). As also explained in Section 2.3.2, the penalty for attesting
outside of the three-fourths majority is the slashing of the entire stake.

Finally, while the contracts are ideally deployed to layer 1, gas fees are
often prohibitively expensive, and EVM-compatible rollups must also be
considered. At present, the only EVM-compatible layer 2 option that is
deployment-ready (and provides the full security of the Mainnet) are opti-
mistic rollups.5

2.2 Donation Pool

Once the threshold of validators in the staking pool described in Section 2.3
is reached, contributors can populate this pool up until the cap outlined in
Section 2.1. It is important to note that contributors are able to participate
in both pools.6

4The term “ternary” is reflective of the three stages associated with each round. It
can alternatively be referred to as “sequent funding” given the similarity of the stages to
sequent logic.

5At the time of publication, this includes Arbitrum and Optimism. EVM-compatible
ZK-rollups are expected to be deployment-ready soon. While zkSync 2.0 has launched on
the Mainnet, it is currently in a limited alpha phase.

6The pools are not merged as some may want to contribute without the additional
burden of attesting.
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2.3 Atypical Staking Pool

This is a novel decentralised oracle that determines whether the stablecoins
locked in the donation pool, or the newly minted joint token described in
Section 2.4, should be released or returned. In the context of a joint token,
the latter would amount to it being burned.

Unlike other staking pools, there is no cryptoeconomic incentive to be-
come a validator. The staked tokens are never converted into interest-
bearing tokens7 and the validator does not receive a direct reward once
attestation is undertaken. On the other hand, there are costs involved to
become a validator, thus the staking pool is itself a donation pool in the
vein described in Section 2.2.

The staking pool is, in effect, donating the following:

• The opportunity cost represented by the risk-free rate (Rf )

• A small but theoretical risk that an honest validator’s stake is slashed
if it does not attest in line with the three-fourths majority

• The time taken to attest

• The gas fees involved in interacting with the staking contract

It is important to articulate the motivations for participating in such a
pool. As described in the overview of Section 2.1, the participants of this
pool are not anonymous. The reason for this is threefold. To minimise the
risk of various attacks described in later subsections, to allow the donation
pool to gauge the quality of the funding round, and most pertinently, to
provide a social incentive for validators to participate. Validators can pub-
licly post the transaction hash once they have staked the required amount.
Thus the incentive is similar to other not-for-profit contributions. The main
difference with a simple donation, however, is that an honest validator can
expect to receive their staked tokens back,8 minus Rf and gas fees.

2.3.1 Sybil Resistance

The inherent properties of the staking pool mitigates this attack. Validators
are not anonymous (see Section 2.1) and only during attestation is a random
selection of validators pseudonymous (see Section 2.3.5).

7The version the author is working to implement will not transfer tokens to a lending
platform due to the increased counterparty and smart contract risk. Other implementa-
tions could use a third-party lending platform so long as all interest earned is provided to
the party that delivered the public good (confirmed by attestation) rather than validators.

8Provided they attest in line with the three-fourths majority.
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2.3.2 Collusion

This is a more complex problem in comparison to Sybil attacks [4, 5]. Nev-
ertheless, this is unlikely to be successful given the inherent design of the
various pools. As explained in the overview of Section 2.1, the total amount
locked in the donation pool is capped in order to be kept in proportion with
the staking pool. In the case of bribing validators, a bad actor would need
to ensure that the total expenditure is less than the potential payout of the
donation pool. As the random selection of validators that are chosen to at-
test does not occur until the final stage, and their addresses are obfuscated
via zk-SNARKs (see Section 2.3.5), the bad actor would have to bribe the
vast majority of validators in order to confidently meet the three-fourths
needed to attest to a malicious outcome. If the bad actor was not able to
persuade enough validators, the entire stake of all compromised validators
is lost during attestation, making collusion prohibitively expensive.

Even in the scenario where the originator of a funding round (who can
remain anonymous) is malicious and is associated with all validators in the
staking pool, the donation pool would most likely not reach the minimum
threshold required to progress to the final stage. As outlined in Section 2.1,
the staking pool is populated before the donation pool precisely to allow
participants in the latter to assess the quality of validators and the fund
originator. An anonymous fund originator, in contrast to a known entity
(see example provided in Section 1.3), is unlikely to receive enough funding
to allow progression to the final stage. When the minimum threshold in
either of the two pools is not reached, all funds are reversed. This also
addresses validators simply colluding out of some common interest. In this
circumstance, the donation pool can be expected to not receive the minimum
threshold if most participants in the staking pool are not trusted.

In the case of a newly minted non-fungible joint token in lieu of a do-
nation pool (described in Section 2.4), the joint token would have minimal
value but still incur the costs outlined in Section 2.3.

2.3.3 Interval Before Attestation

There is a time-based interval between the delivery of the public good and
attestation of the outcome. This is to provide enough time for validators
to decide whether the criteria set at the beginning of the funding round
have been met. For a typical funding round, this might range from weeks to
months, depending on the nature of the funding. For the example outlined
in Section 1.3, the interval should be roughly equivalent to the time required
for peer review. It is important to note that the actual subset of validators
that are randomly chosen to attest are not selected at the beginning of this
time-period, but at the end.
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2.3.4 Cycling of Validators

A random set of validators is selected to attest to the outcome. This occurs
after the interval described in Section 2.3.3. As an anti-collusion measure,
the window of time the validator has to attest is short, and if they are not
available, a different validator is selected until enough have attested. If the
required number of validators do not attest, all funds in the staking pool
and donation pool are reverted, and in the case of a joint token, the token
is burned.9

2.3.5 Attestation

Once a random set of validators is chosen,10 a key is generated and each
attestor submits a transaction containing the zk-SNARK of this key together
with their attestation.11 The zk-SNARK is needed to ensure only validators
that are chosen to attest can call the necessary function. Once enough
verified attestations occur, the stablecoins secured by the staking contract
are either released or reverted. In the context of a joint token in lieu of a
donation pool, the token is either released or burned.

The decision can be shown as:

v∑
i=1

attestationi (1)

where v is the total amount of validators chosen to attest.
It is also theoretically possible to remove the need for an intermediary

attestation contract which verifies the zk-SNARK of the key through the
use of private zk-rollups12—that is, zk-rollups that use recursive proofs [6].
In this case, only a private transaction would need to be sent to the stak-
ing contract, and a proof of the rollup verifies the proof of the underlying
transaction.

For a given zk-SNARK (G,P, V ), where G is the generator algorithm
that outputs the proving key Gp and verification key Gv, the output of
recursive G is (G′

p, G
′
v).

2.3.6 Subjectivity of the Outcome

Validators should be encouraged to only stake in pools where the funding
originator has provided a short and highly specific criteria on what consti-
tutes the delivery of the public good. This is to make it as easy as possible

9The funding round is considered cancelled, and all funds are returned to their origi-
nating addresses.

10For example, 16 out of a total pool of 64 validators.
11A zk-SNARK for each voting outcome (0,1) should also be considered, although this

will use more gas.
12An example of a project currently working on this problem is Aztec.
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to reach the three-fourths consensus during attestation. It is important to
reiterate from Section 2.1 that all funds in the staking pool are reversed if
the required threshold of validators is not reached to progress to the next
stage, therefore it would require the minimum threshold of validators to
make this oversight for the funding round to progress.

There will nevertheless be an inherent degree of subjectivity given the
nature of the decentralised oracle. Those that attested in line with the
three-fourths majority will always receive their stake back, regardless of
the decision on the outcome. This also applies for circumstances where no
three-fourths majority is reached.

2.3.7 Stigmergic DAO Paradigm

While a permanent DAO can be used to manage the parameters of each fund-
ing round, it is not necessary. A new lightweight contract can be deployed
for each successive funding round and an interface can be defined that links
to a common set of contracts in order to save on the gas fees of deployment.
In the context of a joint token, the ERC-721 standard only requires that each
address and tokenId form a unique pair, therefore it does not matter if con-
tinuity in tokenId is absent so long as a different contract address is used.
The advantage of this stigmergic approach is that a governance token can
be omitted, and acceptance of the new parameters is contingent on whether
or not the new contract receives the necessary threshold of validators.13 It
also negates the ability of a party to spam trivial funding rounds.

2.3.8 Stablecoin

A decentralised stablecoin is used for both the staking pool and the donation
pool. The primary requirements are that it is sufficiently decentralised and
secure. At present, only several candidates meet these criteria, with Dai
being the most notable.

2.3.9 Multiple Known Accounts

The preferred way to establish identity for the purpose of the staking pool
is to adopt a proof of personhood system.14 Given the infancy of major
projects that address this need however, a temporary workaround involves
validators posting the transaction hash of their stake from known accounts
on multiple unrelated platforms. While this offers a degree of decentralisa-
tion, it can nevertheless result in less security than a proof of personhood
system.

13This also addresses the funding allocation problem.
14Proof of Humanity and BrightID are two feasible options.
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2.4 Joint Token

The donation pool described in Section 2.2 can be replaced entirely with a
novel type of non-fungible token introduced herein as a joint token (JT). The
token is generated pseudorandomly15 based on the addresses of all validators,
and can only be minted once the staking pool is populated.16 Validators
then decide whether to release or burn the token, in the way described in
the overview of Section 2.3.

While an algorithm for generating the token is detailed in Section 2.4.4,
it can be summarised as a mapping of each address to an entry, which
then collectively form an n2 grid representing all validators. In a primitive
expression, each address can correspond to a colour.

validatorAddress:
0xf8..
colour:
#b9d7d9

validatorAddress:
0x94..
colour:
#343838

Figure 2

Crucially, all data relating to the token is stored on-chain. It primarily
consists of an array of structs containing each address and corresponding
payload. The figure shown above is simply the parsing of this data structure
off-chain. The token conforms to the ERC-721 standard, and there is no
image URI contained in the metadata schema, as only an array of structs
containing each pair is necessary to develop a visual representation off-chain.

More complex mappings beyond colours can be used, with gas fees rep-
resenting the primary bottleneck. For instance, each address can be mapped
to an array of integers that define a markup element, culminating in a far
more elaborate phenotype.

As only a data structure is stored within the token, a byproduct is com-
posability. Its ultimate form when reconstructed in the browser is dependent

15To prevent coordination of its ultimate appearance.
16A hybrid funding round containing both a donation pool and joint token is technically

possible.
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on the way it is parsed and augmented. Zone-based interactivity can be en-
abled by abstracting away some values in tooltips, including the number of
times a contributor has participated in previous rounds.17

2.4.1 Value

In the event of a successful funding round,18 the token can be expected to
have a degree of value:

• As its release to the counterparty is contingent on attestation of the
public good, the data structure found within it is an implicit mapping
of endorsements by validators

• In its visually parsed form, it’s possible to ascertain the location of
each validator address in the n2 grid19

• Given that there is only one token associated with each round, and
that the process through to attestation is designed to be non-trivial
rather than efficient, dilution of endorsements is prevented by avoiding
excessive minting

• Expenditures outlined in Section 2.3 are also encapsulated as a result
of the lack of cryptoeconomic incentives to participate

Ultimately, the released token represents delivery of the public good,
endorsement by a set of validators and a series of expenditures. The primary
component that contributes to its value is the cumulative endorsements.

The recipient can opt to either keep it or trade it on any ERC-721 mar-
ketplace.20

2.4.2 JT-Specific Incentives

Similar to the staking pool described in Section 2.3, the incentive to gener-
ate a joint token is social rather than cryptoeconomic. The validator can
publicly post their transaction hash, in the same way an entity can publicly
announce any other not-for-profit contribution. As the staking pool can be
capped, an additional incentive is scarcity—if the grid is a mapping of 64
validators,21 then a given address can only be associated with the token if
the contribution is made before the cap is reached.

17In this example, data on previous contributions is derived off-chain.
18Where the token is released to the party that delivered the public good.
19One way to show each validator address is via tooltips.
20The recipient is always the party that delivered the public good.
21In practice, the value of this parameter should be highly dependent on the funding

round.
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2.4.3 Default Funding Vehicle

Given the reduced risk due to the minimisation or absence of the donation
pool described in Section 2.2, a joint token should be the default mechanism
for most rounds. This can take a basic form, consisting of only a joint token,
or a hybrid form, consisting of both the former and a reduced cap donation
pool.

2.4.4 Procedural Generation

The following is a truncated algorithm in order to illustrate the key compo-
nents needed to generate a primitive, colour-based joint token.

We first define a struct that will hold the address and colour pair.

struct Validator {

address validatorAddress;

string colour;

}

The string colour corresponds to the hexadecimal code that is ulti-
mately selected, e.g #008b46. For efficiency purposes, this can be repre-
sented as a set of integers that form the RGB equivalent, i.e. 0, 139, 70.
In order to keep the truncated algorithm simple however, we will use a
predefined palette that is represented as an array of strings.

We then initialise an integer representing the total number of validators,
and an array of structs, validator addresses and a predefined palette.

uint validatorCount;

Validator[] coloursArray;

address[] validators; // [0x7a.., 0x6B.., 0xb77.., ..]

string[] palette; // ["#ece5ce", "#424242", "#78c0a8", ..]

We define a function that pseudorandomly selects a colour based on
the validator address and the current block timestamp. Note that a third-
party oracle is not needed as we do not require a more secure source of
randomness for this specific application. A hash function that accepts the
validator address and block.timestamp is sufficient.
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function rand(address _validator) internal view returns(uint256) {

uint256 seed = uint256(keccak256(abi.encodePacked

(_validator, block.timestamp)));

return seed % validatorCount;

}

We populate the array of structs that contains each pair.

function setColoursArray() internal {

for(uint i=0; i<validatorCount; i++){

coloursArray.push(

Validator({

validatorAddress: validators[i],

colour: palette[rand(validators[i])]

})

);

}

}

We define a function that gets all pairs.

function getColoursArray() public view returns (Validator[] memory){

return coloursArray;

}

Table 1: Output

Index validatorAddress colour

0 0x3a.. #78c0a8

1 0xc20.. #ece5ce

.. .. ..

As each funding round is associated with a single token, coloursArray
is the token itself, not an array of tokens. coloursArray needs to be trans-
ferred to an address, per the ERC-721 standard, and the tokenId is the
index of the array containing all coloursArray’s.
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Once the array is parsed off-chain, we can build the grid that can be
presented in the browser.22

validatorAddress:
0x7a..
colour:
#80bca3

validatorAddress:
0x6B..
colour:
#2a2829

Figure 3

2.4.5 Colour Permutations

For simplicity, we assume a funding round of 64 validators v and a palette
of 64 colours c. When colours are able to be reused in the same funding
round, we observe cv = 3.94× 10115 permutations. In the case that colours
can only be selected once, we observe c!

(c−v)! = 1.27 × 1089 permutations.
With either approach, it is highly unlikely that any two parsed tokens will
have the same presentation.

22ENS name can also be displayed if reverse resolution is enabled.
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